Physics eReference Units and safety of nuclear radiation

A. Summary of radioactivity units

Definition	SI unit	cgs unit (obsolete)
Activity, A, Number of disintegrations per second	1 becquerel (Bq) \equiv 1 disintegrations s ⁻¹	1 curie (Ci) $\equiv 37 \times 10^9$ disintegrations s ⁻¹
Conversion	$1 \text{ Bq} = 2.7 \text{ x} 10^{-11} \text{ Ci}$	$1 \text{ Ci} \equiv 37 \text{x} 10^9 \text{ Bq}$
Ionizing radiation exposure	1 C kg ⁻¹ of air	1 roentgen (R)
The amount of radiation required to generate unit charge in unit		$\equiv 1 \text{ esu cm}^{-3} \text{ of air}$
mass (SI unit) or unit volume (cgs unit) of dry air at STP		
Conversion	$1 \text{ C kg}^{-1} = 3876 \text{ R}$	$1 \text{ R} = 2.58 \text{ x} 10^{-4} \text{ C kg}^{-1}$
Radiation (absorbed) dose, D	$1 \operatorname{gray} (\mathrm{Gy}) \equiv 1 \operatorname{J} \mathrm{kg}^{-1}$	$1 \text{ rad (rad)} \equiv 100 \text{ ergs g}^{-1}$
Radiation energy absorbed / unit mass		
Conversion	1 Gy = 100 rad	1 rad = 0.01 Gy
Equivalent dose	1 sievert (Sv) \equiv 1 J kg ⁻¹	$1 \text{ rem (rem)} \equiv 100 \text{ ergs g}^{-1}$
$D \times W_R = H$, where W_R is the radiation type weight factor		
Conversion (for β - or γ -radiation)	1 Sv = 100 rem	1 rem = 0.01 Sv
Effective dose	in Sv	in rem
Weighted average of equivalent dose = $\Sigma_i D_i \times W_{Ri} \times W_{Ti}$ =		
$\Sigma_i H_i \times W_{Ti}$, where W_{Ti} is the tissue/organ weighting factor		

B. Summary of weighting factors

Weighting factor	Radiation type	Tissue / organ		
Radiation type,	γ -ray (photons), β -ray (electrons), muons		1	
W _R	Protons, charged pions		2	
	α -ray, fission fragments, heavy ions		20	
	Neutrons		A function of ne	utron energy
Tissue, W _T		Bone marrow (red), colon, lung, stomach, breast,	0.12 (each)	Total for a
		remainder tissues		body $= 1$
		Gonads	0.08 (each)	
		Bladder, liver, esophagus, thyroid	0.04 (each)	
		Skin, bone surface, salivary, glands, skin	0.01 (each)	

 This work by Matthew Wong, Y.W. Wong and C.W. Ong is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
 1

 Hong Kong License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/hk/deed.en_HK.

C. Radiological protection and Safety

Effective dose	Event	Effects	Remarks
20 Sv	Sudden, accidental, unwanted	Central nervous system (CNS) damaged,	fatal
	exposure	death within hrs	
10 Sv		Gastrointestinal tract (GI) damaged, death	
		with days	
5 Sv		Bone marrow failure, death with weeks	
1 Sv		Blood count depression	may recover
0.1 Sv = 100 mSv per year			Risks are very low for dose values
			below. No observable harmful effects
			on humans.
15-20 mSv per year	Cigarette smoking (1 pack per		
	day)		
20 mSv per year			Maximum annual effective dose for a
			person employed in radiation work
2-3 mSv per year	Annual effective dose from		
	background, including:		
	0.25-0.35 mSv (cosmic ray)		
	0.4 mSv (food)		
	2 mSv (radon in household)		
1 mSv per year			Maximum annual effective dose for a
			public member
0.4 mSv	X-ray diagnosis		
0.01 mSv	1000 mile flight trip		

D. Examples

Example 1 There is a survey meter in a lab configured to show nuclear radiation intensity in the unit of Roentgen (R). However, it is more concerned to get reading in Sv. It is known that (i) one gram of air absorbs 87 ergs of energy, and (ii) one gram of soft tissue absorbs 96 ergs of energy to produces an exposure of one R. This is valid for γ -radiation with energies from 0.1 MeV to 3 MeV.

(a) Explain why rad and R are interchangeable.

(b) Propose an approximate conversion relationship between R and Sv.

Solution

(a) γ -ray of 96 ergs \approx 100 ergs makes 1 gram of issue absorbs to give 1 R. On the other hand, 1 rad of absorbed dose is defined as absorption of radiation energy of 100 ergs per gram. Hence 1 rad and 1 R are interchangeable.

(b) 1 rad = 1 rem (for γ -ray with $W_R = 1$) = 0.01 Sv. Hence 1 R \approx 0.01 Sv. For example, a reading of 2 R is converted into 20 mSv.

Note: 1 R is absorption of 258 μ C kg⁻¹. There are 2.58x10⁻⁴ C/electron charge = 2.58x10⁻⁴ / e ionized air molecules. Ionization energy of an air molecule = 34 eV. Ionization energy absorbed in 1 kg of material is (2.58x10⁻⁴ /e) x (34 e) (J kg⁻¹) = 0.00877 (J kg⁻¹) = 87.7 erg g⁻¹.

Example 2 The radiation background in our lab is 0.02 mR hr⁻¹. Compare the value with the annual upper limit.

Solution

Background radiation is 0.02 mR hr⁻¹ \approx 0.02×0.01 mSv hr⁻¹ = 0.2 µSv hr⁻¹ = 1.75 mSv annually \approx the average background (2.65 - 2.75 mSv per year); larger than the upper limit of 1 mSv annually.

Example 3 The reading shown by a detector placed almost in touch with a lantern mantle specimen is 2.5 mR hr^{-1} . Estimate the potential danger. Solution

The radiation dose is 2.5 mR $hr^{-1} = 0.025 mSv hr^{-1}$. If one holds the source with his/her bare hand, it takes 40 hrs to reach the exposure of 1 mSv (for a pubic member in 1 year); 800 hrs to reach the threshold of 20 mSv (for a related worker in 1 year), even longer by keeping a farther distance, or tissue weighting factor is taken into account.

Importantly, one must avoid swallow or inhale any detachment (may contain radioactive powder e.g. thorium dioxide) from the mantle. Never touch it with bare hands. Wash hands after using it.

